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We identify and investigate bimod&lecton solitons in models of square-lattice arrays of nonlinear optical
waveguides. These vector self-localized states are, in fact, self-induced channels in a nonlinear photonic-crystal
matrix. Such two-dimensional discrete vector solitons are possible in waveguide arrays in which each element
carries two light beams that are either orthogonally polarized or have different carrier wavelengths. Estimates
of the physical parameters necessary to support such soliton solutions in waveguide arrays are given. Using
Newton relaxation methods, we obtain stationary vector-soliton solutions, and examine their stability through
the computation of linearized eigenvalues for small perturbations. Our results may also be applicable to other
systems such as two-component Bose-Einstein condensates trapped in a two-dimensional optical lattice.
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[. INTRODUCTION Another physical setting where 2D discrete vector soli-
tons can appear happens to be two-component Bose-Einstein

Nonlinear lattice equations naturally appear in the de-condensate@BECS trapped in a two-dimensional optical lat-
scription of various physical systems. A paradigmatic ex-ice. In this case, two DNLS equations coupled by nonlinear
ample of a lattice dynamical model is the discrete nonlineacross-phase modulatigXPM) and linear terms can also be
Schralinger (DNLS) equation with the cubic on-site nonlin- applied to the description of the BEC dynamics in the usual
earity [1]. This equation has important applications in bio- mean-field approximation. First of all, a system of two
physics[2], nonlinear optic$3], solid-state physick4], and  Gross-Pitaevski{(GP) equations with exactly the same cou-
Bose-Einstein condensatEs]. In experimental settings, the plings as in the case of the system of two coupled optical
DNLS model finds its most straightforward realization in NLS equations directly describes a binary condensate in the
nonlinear optics, in terms of linearly coupled nonlinear-form of a mixture with two different hyperfine states of one
waveguide arrays, as it was first proposed in R8f.and  species of atom$21]. Nonlinear interaction between the
implemented experimentally in Ref®,7] (a systematic pre- components is generated by atomic collisions, while linear
sentation of the experimental results is given in a recentoupling may be readily induced by an external microwave
work [8]). In this system, self-localized excitatiofdiscrete  or radio-frequency field that induces R4Bil] or Josephson
solitong are possible as a result of the interplay between th¢22] oscillations between populations of the two states. Then,
Kerr nonlinearity and discrete linear coupling. Many proper-if a BEC is placed in a 2D optical lattide3], its dynamics
ties of optical discrete spatial solitons have been systematwill be adequately described by the lattice version of the GP
cally explored in theory and experiment, including generali-equations.
zations to diffraction managemenf9,10], diffraction- A problem that may be promising for the experimental
managed solitongl1], and soliton transpoftl2]. realization, and is of considerable theoretical interest in its

The DNLS equation for two-dimension&2D) nonlinear  own right, is to analyze the formation and the stability of 2D
lattices has also been investigateste, e.g., Refd.13,14], vector discrete solitons in the 2D bimodal DNLS model. This
and references therginin this case, the discreteness hasis the subject of the present work. It is necessary to mention
been shown to substantially modify the dynanjitS,16. As  that strongly localized vectqtwo-componentdiscrete soli-

a result, unstable broad discrete solitons in 2D waveguidéons have been identified in models of 1D nonlinear wave-
arrays with a self-focusing cubi&err) nonlinearity tend to  guide arrays, where two fields interact through XP,25.
guasicollapse into stable narrow localized mofies. Spa- Like their continuous counterpar26-30, these vector
tiotemporal compression is also possible in these systems, aslitons may have components of different typésight,

it was demonstrated theoreticaljt7] and experimentally dark, or antidark In particular, symbiotic bright-dark and
[18]. dark-antidark pairs were predicted in such systga#s25|.

In a very recent experiment, two-dimensional discrete In the model considered belowith the nonlinear and/or
solitons were observed for the first time in photorefractivelinear couplings between the two moglesector discrete
crystals[19]. In this case, the 2D waveguide array was opti-solitons, as stationary solutions to the coupled equations, are
cally induced by interfering pairs of plane waves in highly obtained using numerical Newton-type methods, and the pa-
anisotropic(in terms of nonlinearityphotorefractive crystals rameter regions where these solitons are stable or unstable
[20]. In addition to this approach, photonic-crystal fibersare found. The eigenvalues responsible for the instability of
(PCFs may provide an alternative avenue where such 2lthe solitons are identified, and in cases where solitons are
discrete self-trapped states can be observed. unstable, their evolution is directly simulated.
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The rest of the paper is organized as follows. The models As concerns the application of the general system, Egs.
are formulated in Sec. Il, where we also consider their lineaf1) and (2), to binary BECs trapped in a 2D optical lattice,
spectrum and outline the procedure for the investigation ofhe evolutionary variable should be interpreted as time, the
these states. In Sec. lll, we study the soliton solutions, theiKPM coefficient is of the order of unitj21], and the linear-
stability, and dynamics in a number of different parametercoupling coefficientx is proportional to the intensity of the
regimes. The findings are summarized in Sec. IV. In the Apmicrowave radiation that induces transitions between the two
pendix, we outline a perturbation-theory analysis that vali-hyperfine statef21,22.

dates and elucidates our numerical findings. Before we proceed to identify solitons, it is important to
analyze the spectrum of linear modes in the system. Search-
1. FEORMULATION OF THE PROBLEM |ng for a solution of the linearized equatio(‘[@ and (2) in

the standard form
We consider a 2D square-lattice nonlinear-waveguide ar-

ray consisting of identical regularly spaced elements. Each :,//m,nzw(o)exp[i(Aer kym+kyn)],
waveguide carries two circular or linear mutually orthogonal .
polarization modes that interact nonlinearly via XPM. In a bmn=dVexdi(Az+km+kyn)] (4)

birefringent core, the circular polarizations are linearly ) ] ) )
coupled[31,37. A similar situation exists in a twisted core (With mandn are integerswe find that the dispersion rela-
when linear polarizations are involvd81,33,34. In addi- tion includes two branches
tion to that, one may also consider the case when two light o . :
beams have two different wavelengths. In this case, linear A==k 4C[Sm2(k></2)+sm2(ky/2)]' ®)
coupling is absent and ef_'fectlvely the dynamics of_ the prob-xs follows from expressiofs), there are following two pho-
lem are dllctated k_)y nonlinear self-phase modulati®RM) non bands in the system’s spectrum:
and XPM interactions.

The appropriately normalized general model, involving k—8C< A<k, (6)
all the above-mentioned processes, takes the form

§ —Kk—8C<A<—«k. 7
I ¥mn= = Apthmn— ([ ¢hmnl*+ Bl dmnl ) ¥mn— K bmn» For example, ifx is a positive parameter, note that a gap,
@ —k<A<k—8C, (8)
d . .
'd_z¢m'”: _A2¢m’n_(|¢m‘n|2+ ,3|¢m,n|2)¢m,n— Kb s exists between the two bands provided that4C.

It is relevant to compare the allowed ban@ and (7)
2 witha region in theA space where solitons are, in principle,
possible. Exponentially decaying tails of the soliton also
At n=C(¢miint bm-1nt Umnr1T ¥mn-1—4%mn), obey the linearized version of Eq$l) and (2). In the
©) asymptotic region far from the soliton’s core, one may natu-

h is th ion di | h id rally expect that the tail becomes asymptotically isotropic
wherez is the propagation distance along the wavegul €Séwhich is corroborated by numerical solutions for solitons,

andg is the ratio of the XPM and SPM co_effigients_. For the gee pelow and the linearized equations may be approxi-
interaction between two linear polarization$3=2/3,  ated by their continuum-limit form. This implies that the
whereas for the circular polarization8=2; the latter value asymptotic shape of the tail, in bothand ¢ components, is

gpplies a_Iso to the case where the modgs, 'and dmn G s b i~ (M2+n2) ~Y2exp(Az—pym?Z+n?), whereA is
involve different carrier wavelength$1]. The linear cou- the soliton’s propagation constant apdis a positive con-

pling qonstantC-b.e_tween adjacent. Waveguides,_which aP~stant. It then follows that the relation betweAnand p as-
pears in the definition of the 2D discrete Laplaciap[see sumes the form

Eqg. (3)], is related to the effective lattice spaciigas C
=1h? ) ) A=+k+Cp2. 9)

As was mentioned above, accounts for the linear cou-
pling (if any) among the two modes inside each waveguide. Comparison of Eq(9) with the allowed band) and(7)
It is obvious thatk can be made positive or negative depend-shows that solitons corresponding to the positive sigr of
ing on the sign of the birefringenag.—n, . When we con-  Eq. (9) may exist precisely above the upper band, in accor-
sider the effect ok on the dynamical properties of solitons dance with the commonly known principle that the propaga-
we will, for completeness, display the results for bath 0 tion constantgor frequencies, in the case of the temporal
and k<0. Note that, for the symmetric soliton, the linear evolution of radiation waves and solitons do not overlap, as
coupling yields negative and positive contributions, respecetherwise solitons will be losing energy through emission of
tively, to the system’s Hamiltonian in the case>0 and« radiation.
<0, therefore one may expect that the solitons may be stable Solitons which correspond to the negative sigkah Eq.
in the former case and unstable in the latter case. It will bg9) may overlap with the upper band, in which case we ex-
demonstrated that this is true indeed. pect that they do not exist or are unstabtecall that the
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dispersion equatiof®) is only a necessary, but not sufficient, solution taken as the initial configuratidgin some cases, a
condition for the stability of the localized solutionsndeed,  small perturbation proportional to the unstable eigenmode is
our numerical solution has never revealed solitons thahdded, in order to accelerate the development of the instabil-

would overlap with the bandsee details beloy Note that ity). The objective is to monitor the evolution of the insta-
the solitons corresponding to the negative sigr of Eq. (9) bility.

could potentially exist in the gap of E¢8), should the gap These steps will be carried out for four different relevant
be present; however, in this work, we do not consider theets of parameter values, nameli): 8=0, x#0, and A,
case when this gap is possible. =A,=A (A will be kept fixed: (i) B=2 or 2/3,x=0, and

In order to identify vector discrete solitons, we look for
stationary solitary-wave solutions of Eq4) and(2), which
have the form

A1# A5, which corresponds to the array carrying two polar-
izations of light(linear if 8=2/3 or circular if 3=2, in both
cases without linear mixing between the polarizatjoos

_ . two different wavelengthsg=2). The same corresponds to
Yimn=EXPiA1Z)Umn (10 the binary-BEC trapped in the optical lattice without the
_ . resonant coupling between componen(s.) Arbitrary 8

$mn= XA A22)Vm . D 20, k=0, andA,=A,=A (A will be kept fixed, which is

whereA; and A, are the propagation constants of the two@ more formall case, added for the completeness of the study
components of the solitofthey may be different in the ab- Of the model.(iv) =2,2/3, k#0, andA;=A, (A will be
sence of linear coupling, see belpwWhe substitution of Egs. kept fixed, which is the most general case. It includes, if
(10) and(11) into Egs.(1) and (2) yields equations for the B=2, two polarizations with the linear mixing between

real static fieldsun, , andvy p, them. Another interpretation is the binary-BEC model with
the coupling between the components induced by a resonant
F(Umn 0mn)=A2Umnt ([Unnl?+ BlomalDUnnt €0mn radiation field. In the case of BE@,stands for time. In fact,
the above cases(i)—(iv), represent one-parameter cuts
~Aglna=0, (12 through the parameter space of each physical version of the
_ ) ) model at a fixed value of the soliton’s propagation conssant
G(Umn:Vmn)=A20mn+ ([vmnl*+ BlUmn|)vmn+ KUmn It has been found that these cuts display the basic phenom-
~Apvmn=0. (13  enology of the system in the generic forfwe have also

performed the analysis at other values/of ,, concluding

A numerical solution to Eqg12) and(13) (with A; and A, that results are very similar to those presented in the paper
generally, different if«x=0 and withA;=A, if «#0) will In most cases, the cuts are made at fixed values of the propa-
be obtained in the following section by means of a Newtongation constant, but by varying the linear-coupling constant
iteration method. Here, we only consider vector discrete solix. The purpose of this mode of presentation of results is to
tons that involve only in phasey,, andvy,, components demonstrate the role of the strength of the linear coupling
(unstaggeredfor stability reasons as these states tend tquhile the size of the soliton, which can be roughly estimated
minimize the system's Hamiltonian. . asA 2, remains constant. As mentioned above, the stabil-

_Once the solution is obtained, we will perform linear sta-jy, analysis, in terms of the eigenvalues of small perturba-
bility analysis around it, looking for perturbed solutions asjong, is an important ingredient of the consideration. There-
[35-38 fore, it is relevant to describe here what types of the
eigenvalues may be expected.

=exp(iA1Z)[Upn+ €amn explioz
Yimn=EXAIA12)[Uno + €8mn XN 02) For a stable discrete soliton in the one-component model

+ ebpnexp—iw*2)], (14)  (obtained, for instance, by settingy, ,=0, provided thatc
_ _ =0), there is a pair of perturbation eigenmodes with zero
Gmn= XN AZ) [Vt €C y XN w2) eigenfrequencies. These modes are generated by the phase
+dpy p €XP(— i 0¥ 2)], (15) (gauge invariance of the equations, which is, in turn, related

through the Noether's theorem to the conservation of the
wheree is the infinitesimal amplitude of the perturbation and norm of the solution v, | ¢m |? [39] (in optical waveguide
 is the eigenvalue corresponding to the linéajstability ~ arrays, the norm has the physical meaning of the net power
mode. For the perturbations about the stationary solution in the
Thus, the path that is followed in the following section for one-component model, one might also expect the existence
the numerical investigation of Eq&l) and(2) can be sum- of a pair of translational model0]. However, since the

marized as follows: translational invariance is broken by the discreteness, the
(1) We first solve Eqs(12) and(13) numerically. corresponding eigenvalues, are different from zero. A bi-
(2) Then the linear stability eigenvalue problem is solved,furcation giving rise to the latter modes in 1D systems has
and the eigenvalues and eigenstates are obtained. been quantified in Ref$§41-43, and it has been found that

(3) If the computation of the eigenvalues indicates thethe eigenvalues vanish exponentially as the lattice spdting
presence of an instability, we perform numerical integrationapproaches zero, w,~exd—=4/(2h)] (recall that h
of the Egs.(1) and (2) with the numerically exact unstable =C~%?).
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Finally, there is a continuous spectrum of eigenvaluesimaginary axis, yielding an instability of the symmetric soli-
associated with the zero solutiog§ ,=0). The continuous ton, which sets in ak=0. As « is increased, the amplitude
spectrum of the one-component model consists of planesf the solution decreases and its width increases, so that the
wave eigenfunctions-exdi(kn+k,m—w2)] and satisfies the nhorm of the solution decreases, as is shown in pamedf
dispersion relation (in 2D) w=*[A;+2C(2—cosk, Fig. 1. At k~0.24 (corresponding to the minimum in the
—cosk,)]. inset of Fig. 1 and implying a saddle-node bifurcajioan

For the two-component model, similar features are@dditional pair of eigenfrequencies, that has bifurcated from
present. In particular, ifk=0, there are four zero eigen- the continuous spectrum, alsq becomes Imaginary, adding to
modes; in this case, there are two conserved nepowers, e instability of the configuratiofsee panelb) of Fig. 1 for
one for each component. On the contraryx it 0, it is evi- x=0.3]. At this point, we see that the norm of the solution

dent that only the sum of the two pOWGfEm,n(|¢m,n|2 begins to increase witk. Finally, asx is further increased,

. . the first imaginary pair starts moving towards the real axis
+|¢m,n|2), is conserved. Hence, as soonabecomes dif- % ginary p 9

. . L at k~1.0). During its return to the real axis, the pair col-
ferent from zero, one of the eigenvalue pairs at the origin ha des with the second pair of imaginary eigenvalues. The two

to bifurcate away. Besides that, there are two noOnzerQyirs then continue to approach the real axis together and
translational-eigenvalue paire, (one pertaining to each pacome real ak=1.7. Therefore, ak>1.7, the symmetric

component of the stationary pujseLastly, there are the sgjiton is stable in analogy with what is known about the
continuous-spectrum branches, obeying the dispersion relapntinuum dual-core mod¢#4], see a detailed comparison

tions given below.
We simulated the dynamical evolution of the symmetric
o=*[A;*k+2C(2—cosky—cosky)], (16)  soliton in the case in which it is unstable. We have found, as
shown in the last two panels of Fig. 1, that the unstable
o=*[Ay—k+2C(2—cosky—cosky)]. (170 solution evolves into a state oscillating aroundaaymmet-

) o ) ric configuration, in which most of the power is contained in
On the basis of this information about the spectrum, gne of the two components. The corresponding stationary
perturbative technique can be developed to study the behaysymmetric configuratiofwhose existence is expected, as it
ior of the eigenvalues of the single-component DNLS modelyas mentioned aboyenas been numerically identified and
upon the perturbation imposed by the coupling to the seconghynd to be stable all the values of the parameters at which
component. Technical details of this approach are presentggd as investigated (& x<0.4). In particular, fork=0.3
in the Appendix. The main results obtained by means of thigihe same value as that used in Fig, the asymmetric con-

technique are summarized below in E417) and, for the  figyration and its linear-stability eigenvalues are shown in
specific cases of interest, in E¢421). These results willbe  Fig, 2.

discussed in detail below. In the casex<0, contrary to what was the case fer
>0, the symmetric beam steepend alsis increased and the
1. NUMERICAL RESULTS norm of the solution increases; see pafalof Fig. 3. The

eigenvalue bifurcation in this case is along the real axis,
hence no instability sets in for very smadl|. However, very

We now examine the nature and stability of solutions for‘soon"—at «=—0.0025—the eigenvalues collide with
the four cases specified in the preceding section. The firgshose corresponding to the translational modekich, at
case we consider has parameter val@esO, «#0, and these values of the parameters, were located in the gap be-
A=A,. We fixh=C~?=0.75 andA;=A,=2, and vary tween the origin and the continuous spectyumoving to-
k in the interval —4<k<2. Note that both positive and wards the origin. This event leads to an oscillatpt—48
negative values of the linear-coupling constanare physi- (alias Hamiltonian Hopf [49]) bifurcation to instability
cally meaningful (the same pertains to the birefringence-through the generation of a quartet of genuinely complex
induced linear mixing between two circular polarizations,eigenvalues; recall that, due to the Hamiltonian nature of the
see, e.g., Ref.32]). We stress that no soliton solutions have problem, whenw is an eigenfrequency, so arew,* w*,
been found, for fixed\;=A,=2, in the casec>2, in pre- which together constitute the quartet. This behavior can be
cise agreement with the fact that solitons cannot exist wittobserved in the spectral plane,(,»;) of panel(b) of Fig. 3
A<k, see Eq(9). for k=—0.45. Eventually, the eigenvalues return to the con-

Results known from the 1Dontinuummodel of the dual- tinuous band ak= —3.4 after a tortuous path, but as dis-
core nonlinear optical fibgr4] suggest that solution of two cussed in Ref{46], this is a finite-size effect. In the case of
different types may be expected in this case: obvious symthe infinite domain, the eigenvalues return to the axis only
metric ones, with identical field configurations in the two for more negative values of. In the latter case, the return
components, and nontrivial solutions with a spontaneouslyccursbeyondthe upper-band edge of the continuous spec-
broken symmetry. We start the analysis with the symmetricrum (as opposed to the return that occurs inside the gaps of
solitons. the band in the finite system

For k>0, we find that, as one of the two phase invari- Simulating the dynamical evolution of the instabilityee
ances is brokefas discussed in the preceding sectiamly  the bottom panels in Fig.)3we typically find that, after
one of the two phase eigenvalue pairs remains at the origirsome oscillationgassociated with the nature of the instabil-
The other pair immediately undergoes a bifurcation along théty), the

A. The system with linear coupling
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FIG. 1. Panela) shows how the nornfp) of each component of the symmetric soliton solution changes avitfhe inset shows that the
norm decreases for small values ©of but increases fok=0.24. The second panel shows the, (w;) spectral plane of the stability
eigenvalues for the same solution fer= 0.3 (the subscripts refer to the real and imaginary parts of the “eigenfrequenén”eigenfre-
guency with a nonzero imaginary part indicafes per Eqs(14) and (15)] the presence of an instability. Pandly and (d) show,
respectively, the two fields at the values of the propagation distasd® andz=6, for k=0.3. The bottom panel shows the squared
absolute values of the field in the two components at the central site of the[§oige) = (20,20)] as functions ofz. The latter picture
suggests that the solution is attempting to transform itself into a stable asymmetric solution.
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always unstable. In the lattice model, coexistence between
stable symmetric and asymmetric solitons has not been
found, i.e., the bifurcation transforming the symmetric soli-
ton into asymmetric ones, appears tosugpercriticalin the
latter model.

Naturally, the question arises as to whether some of the
features observed in the case ©# 0 (and especially for
small k) can be explained analytically. One thing that can be
shown[50] for k#0 is that, if a realstable eigenvalue pair
bifurcates(which was reported above for the cas€0), the
Krein signature of this eigenvalue [defined as K=
—sgniC U, W,)—see Refs[36,45,51,52 and for the defi-
nition of the eigenvector components, and W,, see the
Appendix takes the form

K=sgr( sz: Wﬁ)

4 . Hence, fork<0, the bifurcating eigenvalue hasnagative
Krein sign, which, according to Reff51,52, indicates that
the configuration is structurally unstable, and upon a colli-
ol i sion of this eigenvalue with other isolated or continuous-
spectrum eigenvalues, an oscillatory instability will set in
T ] [45,51]. We have also checked the validity of E&20) (see
the AppendiX in this case. We have foun@dy performing
the relevant summations in a number of numerical experi-
-t 1 ments that for the cases consider&UZu?>>Uu, and
hence, for negativec (and smallx), the linear terms are
dominant and give a positive contributipnence, the eigen-
-af 8 frequency must be real, as it is obserj;aghile for positive
k, they will lead to a bifurcation along the imaginary axis
[the right-hand side of EqA20) will be negativd, as is
s s s . . observed indeed in the numerical experiment. In either case,
-20 -15 -10 -5 Q0 5 10 15 20 2 .
() o, for large values ok, the x“ term takes over and in the case
of k>0, the imaginary eigenvalue pair due to the broken
FIG. 2. The asymmetric solution and its linear stability picture phase symmetry moves towards the origin, while in the
are shown fork=0.3 (same as for Fig.)1 One can observe that, <0 case, the eigenvalue moves further away from the origin.
contrary to what is the case for the symmetric configuration at th‘Notice, however, that the leading-order perturbative result

same values of the parameters, the asymmetric one is stable, whigfiyes correct qualitative behavior, even though it canaot,
explains the above-mentioned observation, that the development ?friori be regarded as being valid for large

the instability of the symmetric solution leads to oscillations around
a stable asymmetric configuration.

3'_0 + ANk 7

B. Systems with nonlinear SPM and XPM interactions

soliton of the present typeorresponding tac<<0) doesnot We now consider a case with zero linear-coupling and
rearrange itself into a stable one. Instead, it completely deronzero XPM coefficients8=2, k=0, andA ;> A, (recall
cays into small-amplitude radiation waves. this case pertains to two circular polarizations or two carrier

The general results for the stability and instability of thewavelengths in optics, as well as to binary BECs trapped in
symmetric and asymmetric solitons presented above aren optical lattice, without resonant radiation field inducing
quite similar to those known in the above-mentioned 1D coniransitions between the two compongni¥/e set, in particu-
tinuum model of the dual-core nonlinear optical fijdd].  lar, h=C~2=0.75 andA,=3, and gradually decreast,
Indeed, for a fixed powefnorm) of the solution, the sym- from the initial valueA,=3. We observe that, in this case,
metric soliton is unstable at small values of the linear-the second component grows in amplitu@es well as in
coupling constant, and becomes stable via a pitchfork bifurnorm), while the first component gradually decreases its am-
cation if the coupling constant exceeds a certain thresholglitude and norm, as is shown in parie) of Fig. 4. In this
value. Accordingly, in the case when the symmetric soliton iscase, sinceac=0, both phase eigenvalue pairs are at the ori-
unstable, there exist two stable asymmetric solitons, whiclgin and both norms are conserved. This implies that no os-
are mirror images of each other. Lastly, the symmetric soliillatory instability can arise in this setting. As is well known
ton with negativex, which is tantamount to aantisymmet-  from numerical experiments in 1D and 2B6—3§ (see also
ric (¢=— ) soliton with k>0, is known to be practically Ref. [50]), the translational modes have the same
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FIG. 3. Panela) shows that the norm of each component of the symmetric soliton grows, in theedeas| x| increases. Pangb)
shows the quartet of the unstable eigenvalues of a soliton of this type inthe) spectral plane fok=—0.45. The left and right parts
of the bottom panel show, respectively, the two fieldz-aD andz=8 for «=—0.45, illustrating the destruction of the soliton.

Krein signature as the continuous spectrum, hence they dSince the two bands of the continuous spectrum consist of
not result(for the focusing nonlinearityin oscillatory insta- the intervals we *[A;,A;+8C] and we *[A,,A,
bilities. Therefore, the only instability that can occur is via an+8C], the motion of the band edges can be seen to be in
excursion of the eigenvalue pair of the continuous spectrunagreement with the numerical findings presented above. In
through the origin to the imaginary axis. This was, in fact,fact, we have also checked that, fdp>A ;+8C, the two
observed to occur at,=1.35; see, e.g., panéb) of Fig. 4  bands separate and the continuous spectrum consists of two
for A,=0.6. In this case, the simulated dynamical evolutiondistinct intervals.
of the instability leads to the total decay of the soliton into  The situation is different in the case where the XPM co-
lattice “phonons,” but without the oscillatory transient re- efficient takes the other physically relevant valygs 2/3
gime, which was found in the case of the instability in theinstead of3=2 (and agairnk=0; recall 3=2/3 corresponds
preceding paragraph. to the linear polarizationsin this case, fol\ ;> A ,, it is the

In the case ofA,>A; (A, is once again fixed to be 3), first (rather than the second as in the cgise2) component
the first component of the soliton is the one that grows withof the soliton that grows in its amplitude and norm. Vice
A,, whereas the second component decreases its amplitugersa, forA; <A, it is thesecondrather than the first as in
and norm, as shown in panél) of Fig. 5. In this case, the the case8=2) component that grows. In fact, these two
eigenfrequencies move outwartss opposed to the inward cases g=2/3 and3=2) clearly demonstrate a contrast be-
motion reported above for the cadg<<A;), henceno in-  tween the cases of the wealg£2/3) and strong $=2)
stability is observed for increasing values &%f. XPM couplings between the components. Similarly to what

The evolution of the continuous spectrum eigenvalues iris obvious in the absence of the coupling, in the weak-
this case can be directly predicted from E¢s6) and(17).  coupling case, the decrease of the frequency of one compo-
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FIG. 4. Panela) shows that the norm of the first component of the solitive line with circle$ decreases, whereas the norm of the
second componerithe line with asterisksincreases by the same amount/asdecreases. The second panel shows the ¢;) spectral
plane of eigenfrequencies far,=0.6. The bottom panels show the result of the simulations of the instability development for an unstable
soliton: the left and right parts show the field configurationg-aD andz=4.0, respectively, foA,=0.6.

nent reduces the amplitude and the norm of that same conponent of the soliton becomes almost flaery broad for
ponent. However, for the strong coupling the situation iSA,~6.7.

reversed, the decrease of the frequency of a given component Comparing the above results with what is well known for
causing the decrease of the amplitude and norm obther  the continuum 1D model of the bimodal nonlinear optical
component. Thus, there must exist a critical vagig=1, fiber, we note that, in the latter model, all the vectorial soli-
beyond which the “reaction” of the soliton solutions to the tons are stablgs3]. Thus, the possible instability is a specific
variation of the frequencies is reversed. feature of the lattice model.

A dynamical feature that is common to both casgs, We now move on to the case with arbitrgBy: 0, while
=2/3 andB=2, is that the continuous spectrum eigenvaluesk=0 andA;=A,. Arbitrary values of3 are not of direct
move inwards for\ ,<<A ; and outwards in the opposite case. physical relevance, but we study this case here for reasons of
However, the weakness of the coupling in the cgse2/3  completeness of the exposition.
does not allow instability forA,<A;. In fact, aroundA, For B<0, we start with A;=A,=5 and h=C 72
~0.8, the second component of the soliton almost disap=0.55; this relatively smalh is used to probe the transla-
pears, and the numerical computations show that the eigemional modes. In particular, foh=0(1), the translational
values corresponding to the phase invariance of the wave iaigenfrequencies have already merged with the continuous
the second component bifurcate from the origin and movespectrum; due to their Krein signature being the same as that
towards the corresponding band of the continuous spectrunof the continuous band, they do not create instabilities, but
For A1<A,, the same feature is observed as the first comjust immerse into the continuous spectrum of eigenvalues.
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8 ' ' ' ; - - - ' On the contrary, foj3>0, once again one of the transla-
tional eigenfrequency pairs moves, but this time it moves
towards the continuous-spectrum’s band edge and no insta-
bility arises in the analysis. Parallel to this, the amplitude and
norm of the two components decrease.

We can now compare these numerical findings to the pre-
dictions of Eq.(A22) (see the Appendix In particular, the
first term of the equation is the unperturbed frequency of the
translational mode. Due to the positive Krein sigre.,

-2 U, W, >0) of the translational mode, the second quan-
tity in the expression is positive, while the third one is nega-
tive definite. Numerical computations of the two components
show that, for the cases considered; thUkauﬁ
>23U2uZ, hence, the eigenvalue moves to the right for
>0 and to the left for3<0. These predictions are in agree-
3 35 4 45 5 55 6 65 7 75 ment with the numerical findings.

1 ; . . . . . " ' ' C. Systems with both linear coupling

08l i and nonlinear interactions

Finally, we examine the case where bgthand x are
nonzero; as it was explained above, this case, \8ith2,
oAr ] corresponds to a binary BEC trapped in the optical lattice
and the linear coupling being induced by the resonant radia-
tion field. For 3=2 and x>0 (A;=A,=4 andh=C~1?
g of ewmme e—— * M e— =0.75), we find that the amplitude@nd norm$ of the
beams decrease asincreases. In this case, the phase eigen-
modes bifurcate along the real axis due to the large value of

06 b

0.2 1

-04r ] the XPM coefficientB. Notice that this is opposite to the
sl )l B=0 case. This is also indicated by E&25) (see the Ap-
pendiX, where the addition of the last term of a definite sign
mad ] for a strong coupling leads the eigenvalue to become real.
B . . . . . . . . . However, the Krein signature of the eigenvalue is still deter-
w0t 7 4 * * ° ® " minedbyx, being positive in this case, hence no oscillatory

instabilities are expected to arise. In fact, eigenvalues bifur-
FIG. 5. The top panel shows that the norm of the first compo-cate from the continuous spectrum, collide with the eigenval-

nent(the line with circle$ increases, whereas the norm of the sec-ues of the phase modésassing through themand eventu-
ond componentthe line with asterisksdecreases by the same ally reach the origin, exiting as an unstable pair at
amount asA, increases. The bottom panel shows two separated-2 25 After an excursion along the imaginary axis, this
bands of the continuous spectrum. In this case, the spacing is chgmstable pair returns to the real axis and for lawgd «
sen to ben=2 (C=0.25), in order to see the band separation f0r>3_7), the soliton is stable again.
reasonably small values of;. This rather unusual situation is reminiscent of what hap-

pens in the case of gap solitons in nonlinear Bragg fibers
However, for smalleh such as used here, they are still in the[54,55. Indeed, both an approximate stability analysis, based
gap and their behavior under the perturbations can be olbn the variational approadk6], and direct numerical com-
served. In particular, fo3<0, one of the two pairs of the putations[57] demonstrate that the gap is split into regions
translational eigenvalues moves towards the origin; as a rewhere the solitons are stable and unstable. In any case, the
sult, the eigenfrequencies rapidly find themselves on thestability results obtained here for the 2D discrete solitons
imaginary axis. The critica3 for which they become un- suggest to search for these solitons experimentally in the
stable is~—0.1987. Notice that in this case, the amplitudearray as they are expected to be stable in a large parametric
of the solution(and its norn increases ag becomes more region, and the power necessary for the existence of the soli-
negative, as it is shown in pan@) of Fig. 6. Simulations of tons can be lowered by employing a stronger linear coupling
the dynamical evolution of this instability lead, essentially, to(larger «).
the breaking of the soliton’s symmetry, which eventually de- On the contrary, fo3=2 and«x<0, once again the last
stroys one of its components and leaves, as an asymptotierm in Eq.(A25) dominates and the phase eigenvalues are
state, a nonlinear solitary wave plus lattice radiation in onemaginary(unstablg¢. Whenx~ —2.5, these eigenvalues be-
component and solely the radiation in the other one, as igin to return to the real axis. However, @t — 3.6, a second
shown in the lower part of Fig. 6. pair of eigenvalues, which has bifurcated from the continu-
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FIG. 6. Panela) shows how the norm of the solution increasegBasecomes more negative. The second panel shows the presence of
imaginary eigenfrequencies in the(,»;) spectral plane aB=—0.65. The bottom panels show the two components of the simulated
solution atz=0 andz=0.6 in the left and right parts fo8=—0.65.

ous spectrum, becomes imagingsge panela) of Fig. 7]. k=~3.8. The latter instability is dynamically manifestéd
The two pairs collide on the imaginary axis and form a com-the simulationsthrough fast destruction of the soliton.
plex quartet aic~ — 3.8[see pane{c) of Fig. 7]. In this case, In the case ofkc<0 andB=2/3, it happens again that the
the norm and amplitude of both components increase as st set of terms in Eq(A25) dominates over the last term,
shown in pane(a) of Fig. 7. As for the continuous spectrum, and the eigenfrequencies become real. But as in the gase
it moves towards the origin as becomes more negative. —q this occurs with the “wrong’i.e., negative Krein sig-
Finally, simulations of the evolution of the unstable soliton in hatyre, and the eventual collision of the eigenvalues with the
the model withg=2 and x#0 always show its complete continuous band yields an oscillatory instability. This is
destruction, as is displayed in paned§ and(e) of Fig. 7. shown in the spectral-plane picture in pariel of Fig. 8.

For the weak XPM casg@=2/3 (this case is less inter- panel(a) shows the increase in the amplitude and norm of
eSting phySically, but it is meaningful, Corresponding to thethe pu|se(aSK becomes more negath)ane|s(C) and (d)
set of two linear polarizations with linear mixing between show, after some transient oscillatory behavior, the manifes-
them due to the fiber twistthe last term in Eq(A25) is not  tation of the instability for=— 1.0 through the destruction
as significant. Foik>0, even though once again the beamof hoth components of the soliton.
decreases in amplitudend wideng, the eigenvalues move
along the imaginary axis. They eventually return from this

excursion and become real once againxa1.35. The IV. CONCLUSIONS AND FUTURE CHALLENGES
modes at the edge of the continuous spectrum, however, also
bifurcate, eventually becoming imaginary far>2.3. This We have explored the existence and the stability of two-

pair of eigenfrequencies also returns to the real axis whedimensional discrete vector solitons in several models of
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FIG. 7. Panela) shows that the norm of the components increases lascomes more negative. Pan@$ and (c) show the (, , ;)
spectral plane fok=—3.7 andk= —4.9, respectively. Pane(g) and(e) show the two components of the simulated unstable solution at
z=0 andz=60.5, respectively, fok=—4.9.
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FIG. 8. Panela) shows that the norm of the components increases lascomes more negative. Pafilel shows the {, ,»;) spectral
plane wherk= —1.0. The left and right parts of the bottom panel show the two components of the simulated unstable satatioraat
z=35.3, respectively, fok=—1.0.

nonlinear optical waveguide arrays. The vector interactiongoncerned ourselves with single-humped solutions, the so-
in these systems are described by two coupled discrete nooalled|0,0) solutions in the notation of Ref58] (the terms
linear Schrdinger equations. We considered the impact ofin the bracket denote the number of nodes in the field de-
XPM, as well as of linear coupling, on the two vector com- scribing each componéntit would be interesting to extend
ponents. The same general model applies to two-componetite consideration to multihumped solutions and, in particular,
Bose-Einstein condensates trapped in a 2D optical lafiice to |0,1) and/or|1,1) solutions, and dipole solution29],
particular, the linear coupling between the two equations acwhich have recently been observed experimentally in con-
counts for Rabi or Josephson oscillations between two hytinuum media with saturable nonlinearities, see, e.g.,
perfine states of BEC atoms induced by microwave radiaRef.[30].
tion). Instabilities and parameter regions in which they occur Note also that, in the discrete setup, vortexlike solutions
were found. The corresponding regimes of weak and strongre not necessarily unstable, as they are in the continuum
couplings were identified, and differences in the relevantimit. In fact, for sufficiently weak coupling between the lat-
phenomenology were highlighted. Numerical simulationstice sites, discrete vortices have been found and shown to be
were performed for unstable states in order to investigatgtable in one-component DNLS-type equations in Refs.
their dynamical evolution. It was observed, depending on th¢59,60. Identifying the existence, stability and dynamics of
parameters, that unstable solitons either transform thenthe vortex, dipole, and more general “excited-state” solu-
selves into stable asymmetric ones or are completely detions in the context of 2D nonlinear waveguide arrays seems
stroyed. a natural subject for future investigation. Such studies are
Naturally, many questions still remain unaddressedarticularly interesting, given the robustness of some of these
for such models. In particular, in this work, we have only solutions in the recently studied continuum cag23. The
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investigation of such solitary waves is currently in progressvector of lengthR?, whereRx R being the dimension of the
and will be reported elsewhere. lattice used for the numerical computations in the present 2D
problem. The recasting has been performed in a “row by
I’OW" fashion, i.e., u1’1—>u1, U]_’R—>UR, U2’1—>UR+1, UZ,R

, ] ) ] _—Uyg, and so orjsee also, Eq.12) of Ref.[38]]. The same
We appreciate a valuable discussion with M. Segev. Th'?eshaping is implied in EAL) for ay, bf , ¢, andd} .

research is supported by the U.S. Department of Energy, un- Having discussed in Sec. Il the basic features of the spec-

der Contract No. W-7405-ENG-36. J.H. and B.A.M. aC-y,, |et us now develop the perturbative technique that will
knowledge the hospitality of the Theoretical Division and allow us to monitor the behavior of eigenvalues of the

Center for Nonlinear Studies of the Los AIamc_)s '\.Iation.alsingle—component DNLS equations, once the perturbations
Laboratory. P.G.K. gratefully acknowledges partial f'nanc'alstemming from the second component come into effect. It
support from the University of Massachusetts through a Fapéhould be noted that the theoretical framework will be devel-
ulty Research Grant and from the Clay Mathematics Ins:tl-oped in a quite general fashion. However, when applying it
lute. to the problem at hand, we will restrict ourselves mainly to
considerations regarding discrete eigenval(esmely, the
APPENDIX: THE LINEAR STABILITY PROBLEM translational and phase eigenvalueghe reason for this re-
The linear-stability eigenvalue problem is based on thelsot\r/:/??rgnlws g:qast (tlhé; ;ﬁgt('2%0“;':2@;::’;?;;?2”%’?#:%@3ifOI'
equation . » al k .
q nary axis(i.e., from unstable eigenmodesy a distance\ ;

ACKNOWLEDGMENTS

ay ay and A,, respectively, for the two branches. Since, for our
b b purposesA ; ,=0(1) in most cases, an instability through a
K K bifurcation from the continuous spectrum would require a
w = , (A1) : : P
Ck C bifurcation of the strengtl®(1), which is beyond the realm
dx dx of the leading-order perturbation-theory considerations

wherelJ is the linear stability matriXJacobiah of the form

elaborated here.
We develop our formalism starting from the linear stabil-
ity equation. In particular, using in EGAL)

Jll JlZ J13 Jl4
J2 g2 323 g4 a=U—W,, (A9)
J= . (A2)
o
J J J J
C=X— Yy, (Al11)
Elements of the Jacobian are
di= (X + Y™, (A12)

Ji=(2u?+ Bloe2=2C— A1) 8+ Ci 41+ Ci -1

+Co1+rTCy-R,

(A3)

and after algebraic manipulations, we obtain the eigenvalue
problem for the sefU,,W,,Xy,Y,]" in the form

A=, IG=(Buwi +1)8,  Jiti=Buwidi U U
(A4) k k
21 12 22 11 23 14 Wi Wi
Jii=—GD*, IG="da, =G0, ® =L- ,
kI ( k,l) K, | K, | k.l ( k,I) Xk Xk
I=—(3)*, (A5) Y Y
F=3D*, IE=31, Fi=visa. (ne) where
33=(2Jvil?+ Blud?=2C—Az) 6+ Cicy 1+ Ciy 1 0 L 0 L
Lye 0 Lppy O
+C§ +Cbi—r>» A7 L= ' '
k,I+R k,| —R ( ) 0 L21'7 0 sz,
Ja=—Dr IE=-GDr, BG=—3*, Lous O Lo, O
Jﬁﬁ= —J‘;’,‘Qi. (A8) In this reduction, we consider, for simplicity, real solutions

In Egs. (A3)—(A8), dy, is the Kronecker’s symbol and the

i.e.,u,=u; andv,=vy). In that case,
k k k k

asterisk stands for complex conjugation. Note also thatonly | — — (u2+ gy2—2C—A) 8~ Cy 11— Cdy 1
one index has been used in these expressions for the 2D ™ ’ ' '

fieldsuy,, andvp,,, because we have cast the fields in a

—Cbk1+r~Ck-r: (AL13)
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Ly, = —(3uﬁ+ﬁvﬁ—ZC—A1) 81— C8 111~ C8i 1 they are less “dangerous’_’ in the sense of qausing in;tabili-
ties, as they are located either in the gap or in the continuous
—Cdk1+r=Ck-r; (Al4)  spectrum(depending on the value df), while the phase
modes bifurcate from the origin and hence they can directly
Lip-=—Kkd=La1-, (A15)  |ead to instability. We note, however, for the sake of com-
pleteness that the bifurcation of the translational modes can
Lizs=(—k=2Buwi) dci=Lars ; (A16) e obtained from EqA24) below, by setting3=0.
L, andL,, can be obtained from Eq$A13) and (A14), (2) In the casex=0, B#0, and A;=A,, the phase
through the exchange of andv and of A; and A.,. modes are at the origin, so the translational modes are the

Now, using the equation forUy (wUg=L,_ W only potential discrete-spectrum source of instabilities. In

+L1,_Y,), multiplying it by o, and using the equations for this case, for the translational modes, it will be

oW, andwY,, we obtain a final formula for the eigenvalues

(after forming the inner product of the resulting equation 1

with the vector(U, ) w?= wf; Uﬁ—ZﬂthK WkUku§—4BEk U2uZ|.

> U?

k

1
w?=7———[(U|(Ly Ly +Lyp L U
<Uk|Uk>[< k|( 1, 1,+ 12, 21,+)| k> (A22)
F(Ul(Ly Loy +Lip Lo )X (A17) o
) _ (3) When B#0 (and B is fixed), k=0, and A;— A,
In reaching Eq(A17), we have made no assumptions on = ¢ the translational eigenvalues will be once again respon-

the nature of eigenfunctions and eigenvalues. From here ogjple for possible instabilities, and the corresponding equa-
we will assume that we are close to a case in which we knoWgn for them is

the phase eigenvalue,,=0 and the translational on@,,

namely, we will be perturbing around the cg8e «=0, in

which the components are decoupled. In this cases X, s 2

and W,=Y,, while u,=v,. To the leading order, for the =0yt
corrected eigenvaludge., the ones in the perturbed cases of 2 UE
interes}, we will be using as eigenvectors in E@17) the k

2wt62 U W, + 262 uﬁUE
K

unperturbed ones. This gives us the additional equatsess -

e.g., Ref[36]) - z,ee; uzuz|, (A23)
L]_’_Uk: a)uank , (A18)
L1 W= oungUy, (A19) wherewy; is given by Eq.(A24).

(4) Finally, in the general case whgh# 0 and«# 0, both
and the corresponding ones %, Y, andL,- ; wynpis the  translational and phase modes are of interest and can lead to
eigenvalue of the unperturbed problem. Furthermore, for thénstabilities. In this case, it will be true for the translational
phase modes, we hal$ = du,/dA,; andW, =uy. modes that
On the basis of the above relations, we obtain the follow-
ing conclusions from Eq(A17), upon algebraic manipula-
tions:

2_ 2 _ 2 2
(1) In the casex#0, 8=0, andA,=A,, as discussed St ) 2Kwt§k: VWit « % Uit 2«(p
before, one of the pairs of the phase eigenvalues at the origin ; Uk
of the spectral planed;, ,w;) will bifurcate away from the
origin and may(depending on the sign of) cause an insta- 2 2 2 4
bility. The phase-mode bifurcation is described by _1)2k Uk“k_z/g“’tEk Uka“k_A'BZk Ui,
1 (A24)
2_ 2 2 _ 22
*= G0 ¢ EK Uk+2,<2k U Uy ZKEK ukuk}
(A20)  \hile for the phase modes, we obtain
1 [ 5 (&uk 2
S — 22
auy \ 2 T oA, . aug
k (aTl) WT= Wp=o (auk)z ZKﬂZk 200,) |
A,
guz \?  ou? K !
_ _ (A25)
2K; (207/\1 IR (A21)

In this case, the translational modes can also bifurcate, butherews—q is given by Eq.(A21).
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