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Discrete vector solitons in two-dimensional nonlinear waveguide arrays:
Solutions, stability, and dynamics
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We identify and investigate bimodal~vector! solitons in models of square-lattice arrays of nonlinear optical
waveguides. These vector self-localized states are, in fact, self-induced channels in a nonlinear photonic-crystal
matrix. Such two-dimensional discrete vector solitons are possible in waveguide arrays in which each element
carries two light beams that are either orthogonally polarized or have different carrier wavelengths. Estimates
of the physical parameters necessary to support such soliton solutions in waveguide arrays are given. Using
Newton relaxation methods, we obtain stationary vector-soliton solutions, and examine their stability through
the computation of linearized eigenvalues for small perturbations. Our results may also be applicable to other
systems such as two-component Bose-Einstein condensates trapped in a two-dimensional optical lattice.
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I. INTRODUCTION

Nonlinear lattice equations naturally appear in the
scription of various physical systems. A paradigmatic e
ample of a lattice dynamical model is the discrete nonlin
Schrödinger~DNLS! equation with the cubic on-site nonlin
earity @1#. This equation has important applications in bi
physics@2#, nonlinear optics@3#, solid-state physics@4#, and
Bose-Einstein condensates@5#. In experimental settings, th
DNLS model finds its most straightforward realization
nonlinear optics, in terms of linearly coupled nonlinea
waveguide arrays, as it was first proposed in Ref.@3# and
implemented experimentally in Refs.@6,7# ~a systematic pre-
sentation of the experimental results is given in a rec
work @8#!. In this system, self-localized excitations~discrete
solitons! are possible as a result of the interplay between
Kerr nonlinearity and discrete linear coupling. Many prop
ties of optical discrete spatial solitons have been system
cally explored in theory and experiment, including genera
zations to diffraction management@9,10#, diffraction-
managed solitons@11#, and soliton transport@12#.

The DNLS equation for two-dimensional~2D! nonlinear
lattices has also been investigated~see, e.g., Refs.@13,14#,
and references therein!. In this case, the discreteness h
been shown to substantially modify the dynamics@15,16#. As
a result, unstable broad discrete solitons in 2D wavegu
arrays with a self-focusing cubic~Kerr! nonlinearity tend to
quasicollapse into stable narrow localized modes@15#. Spa-
tiotemporal compression is also possible in these system
it was demonstrated theoretically@17# and experimentally
@18#.

In a very recent experiment, two-dimensional discr
solitons were observed for the first time in photorefract
crystals@19#. In this case, the 2D waveguide array was op
cally induced by interfering pairs of plane waves in high
anisotropic~in terms of nonlinearity! photorefractive crystals
@20#. In addition to this approach, photonic-crystal fibe
~PCFs! may provide an alternative avenue where such
discrete self-trapped states can be observed.
1063-651X/2003/67~5!/056618~16!/$20.00 67 0566
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Another physical setting where 2D discrete vector so
tons can appear happens to be two-component Bose-Ein
condensates~BECs! trapped in a two-dimensional optical la
tice. In this case, two DNLS equations coupled by nonlin
cross-phase modulation~XPM! and linear terms can also b
applied to the description of the BEC dynamics in the us
mean-field approximation. First of all, a system of tw
Gross-Pitaevskii~GP! equations with exactly the same co
plings as in the case of the system of two coupled opt
NLS equations directly describes a binary condensate in
form of a mixture with two different hyperfine states of on
species of atoms@21#. Nonlinear interaction between th
components is generated by atomic collisions, while lin
coupling may be readily induced by an external microwa
or radio-frequency field that induces Rabi@21# or Josephson
@22# oscillations between populations of the two states. Th
if a BEC is placed in a 2D optical lattice@23#, its dynamics
will be adequately described by the lattice version of the
equations.

A problem that may be promising for the experimen
realization, and is of considerable theoretical interest in
own right, is to analyze the formation and the stability of 2
vector discrete solitons in the 2D bimodal DNLS model. Th
is the subject of the present work. It is necessary to men
that strongly localized vector~two-component! discrete soli-
tons have been identified in models of 1D nonlinear wa
guide arrays, where two fields interact through XPM@24,25#.
Like their continuous counterparts@26–30#, these vector
solitons may have components of different types~bright,
dark, or antidark!. In particular, symbiotic bright-dark and
dark-antidark pairs were predicted in such systems@24,25#.

In the model considered below~with the nonlinear and/or
linear couplings between the two modes!, vector discrete
solitons, as stationary solutions to the coupled equations,
obtained using numerical Newton-type methods, and the
rameter regions where these solitons are stable or uns
are found. The eigenvalues responsible for the instability
the solitons are identified, and in cases where solitons
unstable, their evolution is directly simulated.
©2003 The American Physical Society18-1
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The rest of the paper is organized as follows. The mod
are formulated in Sec. II, where we also consider their lin
spectrum and outline the procedure for the investigation
these states. In Sec. III, we study the soliton solutions, t
stability, and dynamics in a number of different parame
regimes. The findings are summarized in Sec. IV. In the A
pendix, we outline a perturbation-theory analysis that v
dates and elucidates our numerical findings.

II. FORMULATION OF THE PROBLEM

We consider a 2D square-lattice nonlinear-waveguide
ray consisting of identical regularly spaced elements. E
waveguide carries two circular or linear mutually orthogon
polarization modes that interact nonlinearly via XPM. In
birefringent core, the circular polarizations are linea
coupled@31,32#. A similar situation exists in a twisted cor
when linear polarizations are involved@31,33,34#. In addi-
tion to that, one may also consider the case when two l
beams have two different wavelengths. In this case, lin
coupling is absent and effectively the dynamics of the pr
lem are dictated by nonlinear self-phase modulation~SPM!
and XPM interactions.

The appropriately normalized general model, involvi
all the above-mentioned processes, takes the form

i
d

dz
cm,n52D2cm,n2~ ucm,nu21bufm,nu2!cm,n2kfm,n ,

~1!

i
d

dz
fm,n52D2fm,n2~ ufm,nu21bucm,nu2!fm,n2kcm,n ,

~2!

D2cm,n[C~cm11,n1cm21,n1cm,n111cm,n2124cm,n!,
~3!

where z is the propagation distance along the waveguid
andb is the ratio of the XPM and SPM coefficients. For th
interaction between two linear polarizations,b52/3,
whereas for the circular polarizations,b52; the latter value
applies also to the case where the modescm,n and fm,n
involve different carrier wavelengths@31#. The linear cou-
pling constantC between adjacent waveguides, which a
pears in the definition of the 2D discrete LaplacianD2 @see
Eq. ~3!#, is related to the effective lattice spacingh as C
[1/h2.

As was mentioned above,k accounts for the linear cou
pling ~if any! among the two modes inside each wavegui
It is obvious thatk can be made positive or negative depen
ing on the sign of the birefringencenx2ny . When we con-
sider the effect ofk on the dynamical properties of soliton
we will, for completeness, display the results for bothk.0
and k,0. Note that, for the symmetric soliton, the line
coupling yields negative and positive contributions, resp
tively, to the system’s Hamiltonian in the casesk.0 andk
,0, therefore one may expect that the solitons may be st
in the former case and unstable in the latter case. It will
demonstrated that this is true indeed.
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As concerns the application of the general system, E
~1! and ~2!, to binary BECs trapped in a 2D optical lattic
the evolutionary variablez should be interpreted as time, th
XPM coefficient is of the order of unity@21#, and the linear-
coupling coefficientk is proportional to the intensity of the
microwave radiation that induces transitions between the
hyperfine states@21,22#.

Before we proceed to identify solitons, it is important
analyze the spectrum of linear modes in the system. Sea
ing for a solution of the linearized equations~1! and ~2! in
the standard form

cm,n5c (0)exp@ i ~Lz1kxm1kyn!#,

fm,n5f (0)exp@ i ~Lz1kxm1kyn!# ~4!

~with m andn are integers! we find that the dispersion rela
tion includes two branches

L56k24C@sin2~kx/2!1sin2~ky/2!#. ~5!

As follows from expression~5!, there are following two pho-
non bands in the system’s spectrum:

k28C,L,k, ~6!

2k28C,L,2k. ~7!

For example, ifk is a positive parameter, note that a gap

2k,L,k28C, ~8!

exists between the two bands provided thatk.4C.
It is relevant to compare the allowed bands~6! and ~7!

with a region in theL space where solitons are, in principl
possible. Exponentially decaying tails of the soliton al
obey the linearized version of Eqs.~1! and ~2!. In the
asymptotic region far from the soliton’s core, one may na
rally expect that the tail becomes asymptotically isotro
~which is corroborated by numerical solutions for soliton
see below! and the linearized equations may be appro
mated by their continuum-limit form. This implies that th
asymptotic shape of the tail, in bothc andf components, is
cm,n ,fm,n;(m21n2)21/2exp(iLz2rAm21n2), whereL is
the soliton’s propagation constant andr is a positive con-
stant. It then follows that the relation betweenL and r as-
sumes the form

L56k1Cr2. ~9!

Comparison of Eq.~9! with the allowed bands~6! and~7!
shows that solitons corresponding to the positive sign ofk in
Eq. ~9! may exist precisely above the upper band, in acc
dance with the commonly known principle that the propag
tion constants~or frequencies, in the case of the tempo
evolution! of radiation waves and solitons do not overlap,
otherwise solitons will be losing energy through emission
radiation.

Solitons which correspond to the negative sign ofk in Eq.
~9! may overlap with the upper band, in which case we e
pect that they do not exist or are unstable@recall that the
8-2
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DISCRETE VECTOR SOLITONS IN TWO-DIMENSIONAL . . . PHYSICAL REVIEW E 67, 056618 ~2003!
dispersion equation~9! is only a necessary, but not sufficien
condition for the stability of the localized solutions#. Indeed,
our numerical solution has never revealed solitons t
would overlap with the band~see details below!. Note that
the solitons corresponding to the negative sign ofk in Eq. ~9!
could potentially exist in the gap of Eq.~8!, should the gap
be present; however, in this work, we do not consider
case when this gap is possible.

In order to identify vector discrete solitons, we look f
stationary solitary-wave solutions of Eqs.~1! and~2!, which
have the form

cm,n5exp~ iL1z!um,n , ~10!

fm,n5exp~ iL2z!vm,n , ~11!

whereL1 and L2 are the propagation constants of the tw
components of the soliton~they may be different in the ab
sence of linear coupling, see below!. The substitution of Eqs
~10! and ~11! into Eqs.~1! and ~2! yields equations for the
real static fieldsum,n andvm,n ,

F~um,n ,vm,n![D2um,n1~ uum,nu21buvm,nu2!um,n1kvm,n

2L1um,n50, ~12!

G~um,n ,vm,n![D2vm,n1~ uvm,nu21buum,nu2!vm,n1kum,n

2L2vm,n50. ~13!

A numerical solution to Eqs.~12! and~13! ~with L1 andL2,
generally, different ifk50 and withL1[L2 if kÞ0) will
be obtained in the following section by means of a New
iteration method. Here, we only consider vector discrete s
tons that involve only in phaseum,n and vm,n components
~unstaggered! for stability reasons as these states tend
minimize the system’s Hamiltonian.

Once the solution is obtained, we will perform linear s
bility analysis around it, looking for perturbed solutions
@35–38#

cm,n5exp~ iL1z!@um,n1eam,n exp~ ivz!

1ebm,n exp~2 iv* z!#, ~14!

fm,n5exp~ iL2z!@vm,n1ecm,n exp~ ivz!

1dm,n exp~2 iv* z!#, ~15!

wheree is the infinitesimal amplitude of the perturbation a
v is the eigenvalue corresponding to the linear~in!stability
mode.

Thus, the path that is followed in the following section f
the numerical investigation of Eqs.~1! and ~2! can be sum-
marized as follows:

~1! We first solve Eqs.~12! and ~13! numerically.
~2! Then the linear stability eigenvalue problem is solve

and the eigenvalues and eigenstates are obtained.
~3! If the computation of the eigenvalues indicates t

presence of an instability, we perform numerical integrat
of the Eqs.~1! and ~2! with the numerically exact unstabl
05661
t

e

n
i-

o

-

,

n

solution taken as the initial configuration~in some cases, a
small perturbation proportional to the unstable eigenmod
added, in order to accelerate the development of the insta
ity!. The objective is to monitor the evolution of the inst
bility.

These steps will be carried out for four different releva
sets of parameter values, namely:~i! b50, kÞ0, andL1

5L2[L (L will be kept fixed!; ~ii ! b52 or 2/3,k50, and
L1ÞL2, which corresponds to the array carrying two pola
izations of light~linear if b52/3 or circular ifb52, in both
cases without linear mixing between the polarizations! or
two different wavelengths (b52). The same corresponds t
the binary-BEC trapped in the optical lattice without th
resonant coupling between components.~iii ! Arbitrary b
Þ0, k50, andL15L2[L (L will be kept fixed!, which is
a more formal case, added for the completeness of the s
of the model.~iv! b52,2/3, kÞ0, andL15L2 (L will be
kept fixed!, which is the most general case. It includes,
b52, two polarizations with the linear mixing betwee
them. Another interpretation is the binary-BEC model w
the coupling between the components induced by a reso
radiation field. In the case of BEC,z stands for time. In fact,
the above cases,~i!–~iv!, represent one-parameter cu
through the parameter space of each physical version of
model at a fixed value of the soliton’s propagation constans.
It has been found that these cuts display the basic phen
enology of the system in the generic form~we have also
performed the analysis at other values ofL1,2, concluding
that results are very similar to those presented in the pap!.
In most cases, the cuts are made at fixed values of the pr
gation constant, but by varying the linear-coupling const
k. The purpose of this mode of presentation of results is
demonstrate the role of the strength of the linear coupl
while the size of the soliton, which can be roughly estima
asL21/2, remains constant. As mentioned above, the sta
ity analysis, in terms of the eigenvalues of small perturb
tions, is an important ingredient of the consideration. The
fore, it is relevant to describe here what types of t
eigenvalues may be expected.

For a stable discrete soliton in the one-component mo
~obtained, for instance, by settingfm,n50, provided thatk
50), there is a pair of perturbation eigenmodes with ze
eigenfrequencies. These modes are generated by the p
~gauge! invariance of the equations, which is, in turn, relat
through the Noether’s theorem to the conservation of
norm of the solution,(m,nucm,nu2 @39# ~in optical waveguide
arrays, the norm has the physical meaning of the net pow!.

For the perturbations about the stationary solution in
one-component model, one might also expect the existe
of a pair of translational modes@40#. However, since the
translational invariance is broken by the discreteness,
corresponding eigenvaluesv tr are different from zero. A bi-
furcation giving rise to the latter modes in 1D systems h
been quantified in Refs.@41–43#, and it has been found tha
the eigenvalues vanish exponentially as the lattice spacinh
approaches zero,v tr;exp@2p2/(2h)# ~recall that h
[C21/2).
8-3
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Finally, there is a continuous spectrum of eigenvalu
associated with the zero solution (cm,n50). The continuous
spectrum of the one-component model consists of pla
wave eigenfunctions;exp@i(kxn1kym2vz)# and satisfies the
dispersion relation ~in 2D! v56@L112C(22coskx
2cosky)#.

For the two-component model, similar features a
present. In particular, ifk50, there are four zero eigen
modes; in this case, there are two conserved norms~powers!,
one for each component. On the contrary, ifkÞ0, it is evi-
dent that only the sum of the two powers,(m,n(ucm,nu2
1ufm,nu2), is conserved. Hence, as soon ask becomes dif-
ferent from zero, one of the eigenvalue pairs at the origin
to bifurcate away. Besides that, there are two nonz
translational-eigenvalue pairsv tr ~one pertaining to each
component of the stationary pulse!. Lastly, there are the
continuous-spectrum branches, obeying the dispersion
tions

v56@L16k12C~22coskx2cosky!#, ~16!

v56@L22k12C~22coskx2cosky!#. ~17!

On the basis of this information about the spectrum
perturbative technique can be developed to study the be
ior of the eigenvalues of the single-component DNLS mo
upon the perturbation imposed by the coupling to the sec
component. Technical details of this approach are prese
in the Appendix. The main results obtained by means of
technique are summarized below in Eq.~A17! and, for the
specific cases of interest, in Eqs.~A21!. These results will be
discussed in detail below.

III. NUMERICAL RESULTS

A. The system with linear coupling

We now examine the nature and stability of solutions
the four cases specified in the preceding section. The
case we consider has parameter valuesb50, kÞ0, and
L15L2. We fix h[C21/250.75 andL15L252, and vary
k in the interval24<k,2. Note that both positive and
negative values of the linear-coupling constantk are physi-
cally meaningful ~the same pertains to the birefringenc
induced linear mixing between two circular polarization
see, e.g., Ref.@32#!. We stress that no soliton solutions ha
been found, for fixedL15L252, in the casek.2, in pre-
cise agreement with the fact that solitons cannot exist w
L,k, see Eq.~9!.

Results known from the 1Dcontinuummodel of the dual-
core nonlinear optical fiber@44# suggest that solution of two
different types may be expected in this case: obvious s
metric ones, with identical field configurations in the tw
components, and nontrivial solutions with a spontaneou
broken symmetry. We start the analysis with the symme
solitons.

For k.0, we find that, as one of the two phase inva
ances is broken~as discussed in the preceding section!, only
one of the two phase eigenvalue pairs remains at the or
The other pair immediately undergoes a bifurcation along
05661
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imaginary axis, yielding an instability of the symmetric so
ton, which sets in atk50. As k is increased, the amplitud
of the solution decreases and its width increases, so tha
norm of the solution decreases, as is shown in panel~a! of
Fig. 1. At k'0.24 ~corresponding to the minimum in th
inset of Fig. 1 and implying a saddle-node bifurcation!, an
additional pair of eigenfrequencies, that has bifurcated fr
the continuous spectrum, also becomes imaginary, addin
the instability of the configuration@see panel~b! of Fig. 1 for
k50.3]. At this point, we see that the norm of the solutio
begins to increase withk. Finally, ask is further increased,
the first imaginary pair starts moving towards the real a
~at k'1.0). During its return to the real axis, the pair co
lides with the second pair of imaginary eigenvalues. The t
pairs then continue to approach the real axis together
become real atk51.7. Therefore, atk.1.7, the symmetric
soliton is stable, in analogy with what is known about th
continuum dual-core model@44#, see a detailed compariso
given below.

We simulated the dynamical evolution of the symmet
soliton in the case in which it is unstable. We have found,
shown in the last two panels of Fig. 1, that the unsta
solution evolves into a state oscillating around anasymmet-
ric configuration, in which most of the power is contained
one of the two components. The corresponding station
asymmetric configuration~whose existence is expected, as
was mentioned above! has been numerically identified an
found to be stable atall the values of the parameters at whic
it was investigated (0,k<0.4). In particular, fork50.3
~the same value as that used in Fig. 1!, the asymmetric con-
figuration and its linear-stability eigenvalues are shown
Fig. 2.

In the casek,0, contrary to what was the case fork
.0, the symmetric beam steepens asuku is increased and the
norm of the solution increases; see panel~a! of Fig. 3. The
eigenvalue bifurcation in this case is along the real ax
hence no instability sets in for very smalluku. However, very
‘‘soon’’—at k520.0025—the eigenvalues collide wit
those corresponding to the translational modes~which, at
these values of the parameters, were located in the gap
tween the origin and the continuous spectrum!, moving to-
wards the origin. This event leads to an oscillatory@45–48#
~alias Hamiltonian Hopf @49#! bifurcation to instability
through the generation of a quartet of genuinely comp
eigenvalues; recall that, due to the Hamiltonian nature of
problem, whenv is an eigenfrequency, so are2v,6v!,
which together constitute the quartet. This behavior can
observed in the spectral plane (v r ,v i) of panel~b! of Fig. 3
for k520.45. Eventually, the eigenvalues return to the co
tinuous band atk523.4 after a tortuous path, but as di
cussed in Ref.@46#, this is a finite-size effect. In the case o
the infinite domain, the eigenvalues return to the axis o
for more negative values ofk. In the latter case, the retur
occursbeyondthe upper-band edge of the continuous sp
trum ~as opposed to the return that occurs inside the gap
the band in the finite system!.

Simulating the dynamical evolution of the instability~see
the bottom panels in Fig. 3!, we typically find that, after
some oscillations~associated with the nature of the instab
ity!, the
8-4



ed

DISCRETE VECTOR SOLITONS IN TWO-DIMENSIONAL . . . PHYSICAL REVIEW E 67, 056618 ~2003!
FIG. 1. Panel~a! shows how the norm~p! of each component of the symmetric soliton solution changes withk. The inset shows that the
norm decreases for small values ofk, but increases fork>0.24. The second panel shows the (v r ,v i) spectral plane of the stability
eigenvalues for the same solution fork50.3 ~the subscripts refer to the real and imaginary parts of the ‘‘eigenfrequency’’!. An eigenfre-
quency with a nonzero imaginary part indicates@as per Eqs.~14! and ~15!# the presence of an instability. Panels~c! and ~d! show,
respectively, the two fields at the values of the propagation distancez50 andz56, for k50.3. The bottom panel shows the squar
absolute values of the field in the two components at the central site of the pulse@(m,n)5(20,20)# as functions ofz. The latter picture
suggests that the solution is attempting to transform itself into a stable asymmetric solution.
056618-5



d

he
a

on

ar
fu
o
i

ic
ol

een
een
li-

the

be

lli-
s-
in

eri-

is

ase,
e
en

gin.
ult

t,

nd

ier
in

ng

,

m-

ri-
os-
n

e

re
t,
th
h

nt
n

HUDOCK et al. PHYSICAL REVIEW E 67, 056618 ~2003!
soliton of the present type~corresponding tok,0) doesnot
rearrange itself into a stable one. Instead, it completely
cays into small-amplitude radiation waves.

The general results for the stability and instability of t
symmetric and asymmetric solitons presented above
quite similar to those known in the above-mentioned 1D c
tinuum model of the dual-core nonlinear optical fiber@44#.
Indeed, for a fixed power~norm! of the solution, the sym-
metric soliton is unstable at small values of the line
coupling constant, and becomes stable via a pitchfork bi
cation if the coupling constant exceeds a certain thresh
value. Accordingly, in the case when the symmetric soliton
unstable, there exist two stable asymmetric solitons, wh
are mirror images of each other. Lastly, the symmetric s
ton with negativek, which is tantamount to anantisymmet-
ric (f52c) soliton with k.0, is known to be practically

FIG. 2. The asymmetric solution and its linear stability pictu
are shown fork50.3 ~same as for Fig. 1!. One can observe tha
contrary to what is the case for the symmetric configuration at
same values of the parameters, the asymmetric one is stable, w
explains the above-mentioned observation, that the developme
the instability of the symmetric solution leads to oscillations arou
a stable asymmetric configuration.
05661
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always unstable. In the lattice model, coexistence betw
stable symmetric and asymmetric solitons has not b
found, i.e., the bifurcation transforming the symmetric so
ton into asymmetric ones, appears to besupercritical in the
latter model.

Naturally, the question arises as to whether some of
features observed in the case ofkÞ0 ~and especially for
smallk) can be explained analytically. One thing that can
shown@50# for kÞ0 is that, if a real~stable! eigenvalue pair
bifurcates~which was reported above for the casek,0), the
Krein signature of this eigenvalue @defined as K5
2sgn((kUkWk)—see Refs.@36,45,51,52#, and for the defi-
nition of the eigenvector componentsUk and Wk , see the
Appendix# takes the form

K5sgnS k(
k

Wk
2D .

Hence, fork,0, the bifurcating eigenvalue has anegative
Krein sign, which, according to Refs.@51,52#, indicates that
the configuration is structurally unstable, and upon a co
sion of this eigenvalue with other isolated or continuou
spectrum eigenvalues, an oscillatory instability will set
@45,51#. We have also checked the validity of Eq.~A20! ~see
the Appendix! in this case. We have found~by performing
the relevant summations in a number of numerical exp
ments! that for the cases considered(kUk

2uk
2.(Ukuk and

hence, for negativek ~and smallk), the linear terms are
dominant and give a positive contribution@hence, the eigen-
frequency must be real, as it is observed#, while for positive
k, they will lead to a bifurcation along the imaginary ax
@the right-hand side of Eq.~A20! will be negative#, as is
observed indeed in the numerical experiment. In either c
for large values ofk, thek2 term takes over and in the cas
of k.0, the imaginary eigenvalue pair due to the brok
phase symmetry moves towards the origin, while in thek
,0 case, the eigenvalue moves further away from the ori
Notice, however, that the leading-order perturbative res
gives correct qualitative behavior, even though it cannoa
priori , be regarded as being valid for largek.

B. Systems with nonlinear SPM and XPM interactions

We now consider a case with zero linear-coupling a
nonzero XPM coefficients:b52, k50, andL1.L2 ~recall
this case pertains to two circular polarizations or two carr
wavelengths in optics, as well as to binary BECs trapped
an optical lattice, without resonant radiation field induci
transitions between the two components!. We set, in particu-
lar, h[C21/250.75 andL153, and gradually decreaseL2
from the initial valueL253. We observe that, in this case
the second component grows in amplitude~as well as in
norm!, while the first component gradually decreases its a
plitude and norm, as is shown in panel~a! of Fig. 4. In this
case, sincek50, both phase eigenvalue pairs are at the o
gin and both norms are conserved. This implies that no
cillatory instability can arise in this setting. As is well know
from numerical experiments in 1D and 2D@36–38# ~see also
Ref. @50#!, the translational modes have the sam

e
ich
of

d
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DISCRETE VECTOR SOLITONS IN TWO-DIMENSIONAL . . . PHYSICAL REVIEW E 67, 056618 ~2003!
FIG. 3. Panel~a! shows that the norm of each component of the symmetric soliton grows, in the casek,0, asuku increases. Panel~b!
shows the quartet of the unstable eigenvalues of a soliton of this type in the (v r ,v i) spectral plane fork520.45. The left and right parts
of the bottom panel show, respectively, the two fields atz50 andz58 for k520.45, illustrating the destruction of the soliton.
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Krein signature as the continuous spectrum, hence they
not result~for the focusing nonlinearity! in oscillatory insta-
bilities. Therefore, the only instability that can occur is via
excursion of the eigenvalue pair of the continuous spect
through the origin to the imaginary axis. This was, in fa
observed to occur atL251.35; see, e.g., panel~b! of Fig. 4
for L250.6. In this case, the simulated dynamical evoluti
of the instability leads to the total decay of the soliton in
lattice ‘‘phonons,’’ but without the oscillatory transient re
gime, which was found in the case of the instability in t
preceding paragraph.

In the case ofL2.L1 (L1 is once again fixed to be 3)
the first component of the soliton is the one that grows w
L2, whereas the second component decreases its ampl
and norm, as shown in panel~a! of Fig. 5. In this case, the
eigenfrequencies move outwards~as opposed to the inwar
motion reported above for the caseL2,L1), henceno in-
stability is observed for increasing values ofL2.

The evolution of the continuous spectrum eigenvalues
this case can be directly predicted from Eqs.~16! and ~17!.
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Since the two bands of the continuous spectrum consis
the intervals vP6@L1 ,L118C# and vP6@L2 ,L2
18C#, the motion of the band edges can be seen to be
agreement with the numerical findings presented above
fact, we have also checked that, forL2.L118C, the two
bands separate and the continuous spectrum consists o
distinct intervals.

The situation is different in the case where the XPM c
efficient takes the other physically relevant value,b52/3
instead ofb52 ~and againk50; recallb52/3 corresponds
to the linear polarizations!. In this case, forL1.L2, it is the
first ~rather than the second as in the caseb52) component
of the soliton that grows in its amplitude and norm. Vic
versa, forL1,L2, it is thesecond~rather than the first as in
the caseb52) component that grows. In fact, these tw
cases (b52/3 andb52) clearly demonstrate a contrast b
tween the cases of the weak (b52/3) and strong (b52)
XPM couplings between the components. Similarly to wh
is obvious in the absence of the coupling, in the wea
coupling case, the decrease of the frequency of one com
8-7
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FIG. 4. Panel~a! shows that the norm of the first component of the soliton~the line with circles! decreases, whereas the norm of th
second component~the line with asterisks! increases by the same amount asL2 decreases. The second panel shows the (v r ,v i) spectral
plane of eigenfrequencies forL250.6. The bottom panels show the result of the simulations of the instability development for an un
soliton: the left and right parts show the field configurations atz50 andz54.0, respectively, forL250.6.
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nent reduces the amplitude and the norm of that same c
ponent. However, for the strong coupling the situation
reversed, the decrease of the frequency of a given compo
causing the decrease of the amplitude and norm of theother
component. Thus, there must exist a critical valuebcr.1,
beyond which the ‘‘reaction’’ of the soliton solutions to th
variation of the frequencies is reversed.

A dynamical feature that is common to both cases,b
52/3 andb52, is that the continuous spectrum eigenvalu
move inwards forL2,L1 and outwards in the opposite cas
However, the weakness of the coupling in the caseb52/3
does not allow instability forL2,L1. In fact, aroundL2
'0.8, the second component of the soliton almost dis
pears, and the numerical computations show that the ei
values corresponding to the phase invariance of the wav
the second component bifurcate from the origin and m
towards the corresponding band of the continuous spectr
For L1,L2, the same feature is observed as the first co
05661
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s
ent

s
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ponent of the soliton becomes almost flat~very broad! for
L2'6.7.

Comparing the above results with what is well known f
the continuum 1D model of the bimodal nonlinear optic
fiber, we note that, in the latter model, all the vectorial so
tons are stable@53#. Thus, the possible instability is a specifi
feature of the lattice model.

We now move on to the case with arbitrarybÞ0, while
k50 andL15L2. Arbitrary values ofb are not of direct
physical relevance, but we study this case here for reason
completeness of the exposition.

For b,0, we start with L15L255 and h[C21/2

50.55; this relatively smallh is used to probe the transla
tional modes. In particular, forh5O(1), the translational
eigenfrequencies have already merged with the continu
spectrum; due to their Krein signature being the same as
of the continuous band, they do not create instabilities,
just immerse into the continuous spectrum of eigenvalu
8-8
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DISCRETE VECTOR SOLITONS IN TWO-DIMENSIONAL . . . PHYSICAL REVIEW E 67, 056618 ~2003!
However, for smallerh such as used here, they are still in t
gap and their behavior under the perturbations can be
served. In particular, forb,0, one of the two pairs of the
translational eigenvalues moves towards the origin; as a
sult, the eigenfrequencies rapidly find themselves on
imaginary axis. The criticalb for which they become un
stable is'20.1987. Notice that in this case, the amplitu
of the solution~and its norm! increases asb becomes more
negative, as it is shown in panel~a! of Fig. 6. Simulations of
the dynamical evolution of this instability lead, essentially,
the breaking of the soliton’s symmetry, which eventually d
stroys one of its components and leaves, as an asymp
state, a nonlinear solitary wave plus lattice radiation in o
component and solely the radiation in the other one, a
shown in the lower part of Fig. 6.

FIG. 5. The top panel shows that the norm of the first com
nent ~the line with circles! increases, whereas the norm of the se
ond component~the line with asterisks! decreases by the sam
amount asL2 increases. The bottom panel shows two separa
bands of the continuous spectrum. In this case, the spacing is
sen to beh52 (C50.25), in order to see the band separation
reasonably small values ofL1.
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On the contrary, forb.0, once again one of the transla
tional eigenfrequency pairs moves, but this time it mov
towards the continuous-spectrum’s band edge and no in
bility arises in the analysis. Parallel to this, the amplitude a
norm of the two components decrease.

We can now compare these numerical findings to the p
dictions of Eq.~A22! ~see the Appendix!. In particular, the
first term of the equation is the unperturbed frequency of
translational mode. Due to the positive Krein sign~i.e.,
2(kUkWk.0) of the translational mode, the second qua
tity in the expression is positive, while the third one is neg
tive definite. Numerical computations of the two compone
show that, for the cases considered,2v t(UkWkuk

2

.2(Uk
2uk

2 , hence, the eigenvalue moves to the right forb
.0 and to the left forb,0. These predictions are in agre
ment with the numerical findings.

C. Systems with both linear coupling
and nonlinear interactions

Finally, we examine the case where bothb and k are
nonzero; as it was explained above, this case, withb52,
corresponds to a binary BEC trapped in the optical latt
and the linear coupling being induced by the resonant ra
tion field. For b52 and k.0 (L15L254 and h[C21/2

50.75), we find that the amplitudes~and norms! of the
beams decrease ask increases. In this case, the phase eig
modes bifurcate along the real axis due to the large valu
the XPM coefficientb. Notice that this is opposite to th
b50 case. This is also indicated by Eq.~A25! ~see the Ap-
pendix!, where the addition of the last term of a definite si
for a strong coupling leads the eigenvalue to become r
However, the Krein signature of the eigenvalue is still det
mined byk, being positive in this case, hence no oscillato
instabilities are expected to arise. In fact, eigenvalues bi
cate from the continuous spectrum, collide with the eigenv
ues of the phase modes~passing through them!, and eventu-
ally reach the origin, exiting as an unstable pair atk
'2.25. After an excursion along the imaginary axis, th
unstable pair returns to the real axis and for largek (k
>3.7), the soliton is stable again.

This rather unusual situation is reminiscent of what ha
pens in the case of gap solitons in nonlinear Bragg fib
@54,55#. Indeed, both an approximate stability analysis, ba
on the variational approach@56#, and direct numerical com
putations@57# demonstrate that the gap is split into regio
where the solitons are stable and unstable. In any case
stability results obtained here for the 2D discrete solito
suggest to search for these solitons experimentally in
array as they are expected to be stable in a large param
region, and the power necessary for the existence of the
tons can be lowered by employing a stronger linear coup
~largerk).

On the contrary, forb52 andk,0, once again the las
term in Eq.~A25! dominates and the phase eigenvalues
imaginary~unstable!. Whenk'22.5, these eigenvalues be
gin to return to the real axis. However, atk'23.6, a second
pair of eigenvalues, which has bifurcated from the contin

-
-

d
o-

r
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FIG. 6. Panel~a! shows how the norm of the solution increases asb becomes more negative. The second panel shows the presen
imaginary eigenfrequencies in the (v r ,v i) spectral plane atb520.65. The bottom panels show the two components of the simula
solution atz50 andz50.6 in the left and right parts forb520.65.
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ous spectrum, becomes imaginary@see panel~a! of Fig. 7#.
The two pairs collide on the imaginary axis and form a co
plex quartet atk'23.8 @see panel~c! of Fig. 7#. In this case,
the norm and amplitude of both components increase a
shown in panel~a! of Fig. 7. As for the continuous spectrum
it moves towards the origin ask becomes more negative
Finally, simulations of the evolution of the unstable soliton
the model withb52 and kÞ0 always show its complete
destruction, as is displayed in panels~d! and ~e! of Fig. 7.

For the weak XPM case,b52/3 ~this case is less inter
esting physically, but it is meaningful, corresponding to t
set of two linear polarizations with linear mixing betwee
them due to the fiber twist!, the last term in Eq.~A25! is not
as significant. Fork.0, even though once again the bea
decreases in amplitude~and widens!, the eigenvalues move
along the imaginary axis. They eventually return from th
excursion and become real once again atk>1.35. The
modes at the edge of the continuous spectrum, however,
bifurcate, eventually becoming imaginary fork.2.3. This
pair of eigenfrequencies also returns to the real axis w
05661
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k'3.8. The latter instability is dynamically manifested~in
the simulations! through fast destruction of the soliton.

In the case ofk,0 andb52/3, it happens again that th
first set of terms in Eq.~A25! dominates over the last term
and the eigenfrequencies become real. But as in the cab
50, this occurs with the ‘‘wrong’’~i.e., negative! Krein sig-
nature, and the eventual collision of the eigenvalues with
continuous band yields an oscillatory instability. This
shown in the spectral-plane picture in panel~b! of Fig. 8.
Panel~a! shows the increase in the amplitude and norm
the pulse~as k becomes more negative!, panels~c! and ~d!
show, after some transient oscillatory behavior, the mani
tation of the instability fork521.0 through the destruction
of both components of the soliton.

IV. CONCLUSIONS AND FUTURE CHALLENGES

We have explored the existence and the stability of tw
dimensional discrete vector solitons in several models
8-10
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FIG. 7. Panel~a! shows that the norm of the components increases ask becomes more negative. Panels~b! and ~c! show the (v r ,v i)
spectral plane fork523.7 andk524.9, respectively. Panels~d! and ~e! show the two components of the simulated unstable solution
z50 andz560.5, respectively, fork524.9.
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HUDOCK et al. PHYSICAL REVIEW E 67, 056618 ~2003!
FIG. 8. Panel~a! shows that the norm of the components increases ask becomes more negative. Panel~b! shows the (v r ,v i) spectral
plane whenk521.0. The left and right parts of the bottom panel show the two components of the simulated unstable solution atz50 and
z535.3, respectively, fork521.0.
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nonlinear optical waveguide arrays. The vector interacti
in these systems are described by two coupled discrete
linear Schro¨dinger equations. We considered the impact
XPM, as well as of linear coupling, on the two vector com
ponents. The same general model applies to two-compo
Bose-Einstein condensates trapped in a 2D optical lattice~in
particular, the linear coupling between the two equations
counts for Rabi or Josephson oscillations between two
perfine states of BEC atoms induced by microwave rad
tion!. Instabilities and parameter regions in which they oc
were found. The corresponding regimes of weak and str
couplings were identified, and differences in the relev
phenomenology were highlighted. Numerical simulatio
were performed for unstable states in order to investig
their dynamical evolution. It was observed, depending on
parameters, that unstable solitons either transform th
selves into stable asymmetric ones or are completely
stroyed.

Naturally, many questions still remain unaddress
for such models. In particular, in this work, we have on
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concerned ourselves with single-humped solutions, the
called u0,0& solutions in the notation of Ref.@58# ~the terms
in the bracket denote the number of nodes in the field
scribing each component!. It would be interesting to extend
the consideration to multihumped solutions and, in particu
to u0,1& and/or u1,1& solutions, and dipole solutions@29#,
which have recently been observed experimentally in c
tinuum media with saturable nonlinearities, see, e
Ref. @30#.

Note also that, in the discrete setup, vortexlike solutio
are not necessarily unstable, as they are in the continu
limit. In fact, for sufficiently weak coupling between the la
tice sites, discrete vortices have been found and shown t
stable in one-component DNLS-type equations in Re
@59,60#. Identifying the existence, stability and dynamics
the vortex, dipole, and more general ‘‘excited-state’’ so
tions in the context of 2D nonlinear waveguide arrays see
a natural subject for future investigation. Such studies
particularly interesting, given the robustness of some of th
solutions in the recently studied continuum cases@29#. The
8-12
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investigation of such solitary waves is currently in progre
and will be reported elsewhere.
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APPENDIX: THE LINEAR STABILITY PROBLEM

The linear-stability eigenvalue problem is based on
equation

vS ak

bk*

ck

dk*
D 5J•S ak

bk*

ck

dk*
D , ~A1!

whereJ is the linear stability matrix~Jacobian! of the form

J5S J11 J12 J13 J14

J21 J22 J23 J24

J31 J32 J33 J34

J41 J42 J43 J44

D . ~A2!

Elements of the Jacobian are

Jk,l
115~2uuku21buvku222C2L1!dk,l1Cdk,l 111Cdk,l 21

1Cdk,l 1R1Cdk,l 2R , ~A3!

Jk,l
125uk

2dk,l , Jk,l
135~bukvk* 1k!dk,l , Jk,l

145bukvkdk,l ,
~A4!

Jk,l
2152~Jk,l

12!* , Jk,l
2252Jk,l

11 , Jk,l
2352~Jk,l

14!* ,

Jk,l
2452~Jk,l

13!* , ~A5!

Jk,l
315~Jk,l

13!* , Jk,l
325Jk,l

14 , Jk,l
345vk

2dk,l , ~A6!

Jk,l
335~2uvku21buuku222C2L2!dk,l1Cdk,l 111Cdk,l 21

1Cdk,l 1R1Cdk,l 2R , ~A7!

Jk,l
4152~Jk,l

14!* , Jk,l
4252~Jk,l

13!* , Jk,l
4352~Jk,l

34!* ,

Jk,l
4452Jk,l

33 . ~A8!

In Eqs. ~A3!–~A8!, dk,l is the Kronecker’s symbol and th
asterisk stands for complex conjugation. Note also that o
one index has been used in these expressions for the
fields um,n and vm,n , because we have cast the fields in
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2D

vector of lengthR2, whereR3R being the dimension of the
lattice used for the numerical computations in the present
problem. The recasting has been performed in a ‘‘row
row’’ fashion, i.e., u1,1→u1 , u1,R→uR , u2,1→uR11 , u2,R
→u2R, and so on@see also, Eq.~12! of Ref. @38##. The same
reshaping is implied in Eq.~A1! for ak , bk* , ck , anddk* .

Having discussed in Sec. II the basic features of the sp
trum, let us now develop the perturbative technique that w
allow us to monitor the behavior of eigenvalues of t
single-component DNLS equations, once the perturbati
stemming from the second component come into effect
should be noted that the theoretical framework will be dev
oped in a quite general fashion. However, when applying
to the problem at hand, we will restrict ourselves mainly
considerations regarding discrete eigenvalues~namely, the
translational and phase eigenvalues!. The reason for this re-
striction is that the continuous-spectrum eigenvalues, as
lows from Eqs.~16! and~17!, are separated from the imag
nary axis~i.e., from unstable eigenmodes! by a distanceL1
and L2, respectively, for the two branches. Since, for o
purposes,L1,25O(1) in most cases, an instability through
bifurcation from the continuous spectrum would require
bifurcation of the strengthO(1), which is beyond the realm
of the leading-order perturbation-theory consideratio
elaborated here.

We develop our formalism starting from the linear stab
ity equation. In particular, using in Eq.~A1!

ak5Uk2Wk , ~A9!

bk5~Uk1Wk!* , ~A10!

ck5Xk2Yk , ~A11!

dk5~Xk1Yk!* , ~A12!

and after algebraic manipulations, we obtain the eigenva
problem for the set@Uk ,Wk ,Xk ,Yk#

T in the form

vS Uk

Wk

Xk

Yk

D 5L•S Uk

Wk

Xk

Yk

D ,

where

L5S 0 L1,2 0 L12,2

L1,1 0 L12,1 0

0 L21,2 0 L2,2

L21,1 0 L2,1 0

D .

In this reduction, we consider, for simplicity, real solution
~i.e., uk5uk* andvk5vk* ). In that case,

L1,252~uk
21bvk

222C2L1!dk,l2Cdk,l 112Cdk,l 21

2Cdk,l 1R2Cdk,l 2R , ~A13!
8-13
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L1,152~3uk
21bvk

222C2L1!dk,l2Cdk,l 112Cdk,l 21

2Cdk,l 1R2Cdk,l 2R , ~A14!

L12,252kdk,l5L21,2 , ~A15!

L12,15~2k22bukvk!dk,l5L21,1 ; ~A16!

L2,2 andL2,1 can be obtained from Eqs.~A13! and ~A14!,
through the exchange ofu andv and ofL1 andL2.

Now, using the equation forUk (vUk5L1,2Wk
1L12,2Yk), multiplying it by v, and using the equations fo
vWk andvYk , we obtain a final formula for the eigenvalue
~after forming the inner product of the resulting equati
with the vector̂ Uku)

v25
1

^UkuUk&
@^Uku~L1,2L1,11L12,2L21,1!uUk&

1^Uku~L1,2L12,11L12,2L2,1!uXk&#. ~A17!

In reaching Eq.~A17!, we have made no assumptions
the nature of eigenfunctions and eigenvalues. From here
we will assume that we are close to a case in which we kn
the phase eigenvaluevph50 and the translational onev tr ,
namely, we will be perturbing around the caseb5k50, in
which the components are decoupled. In this case,Uk5Xk
and Wk5Yk , while uk5vk . To the leading order, for the
corrected eigenvalues~i.e., the ones in the perturbed cases
interest!, we will be using as eigenvectors in Eq.~A17! the
unperturbed ones. This gives us the additional equations~see,
e.g., Ref.@36#!

L1,2Uk5vunpWk , ~A18!

L1,1Wk5vunpUk , ~A19!

and the corresponding ones forXk , Yk andL2,6 ; vunp is the
eigenvalue of the unperturbed problem. Furthermore, for
phase modes, we haveUk5]uk /]L1 andWk5uk .

On the basis of the above relations, we obtain the follo
ing conclusions from Eq.~A17!, upon algebraic manipula
tions:

~1! In the casekÞ0, b50, andL15L2, as discussed
before, one of the pairs of the phase eigenvalues at the o
of the spectral plane (v r ,v i) will bifurcate away from the
origin and may~depending on the sign ofk) cause an insta
bility. The phase-mode bifurcation is described by

v25
1

^UkuUk&
Fk2(

k
Uk

212k(
k

Ukuk22k(
k

Uk
2uk

2G
~A20!

5
1

(
k

S ]uk

]L1
D 2 H k2(

k
S ]uk

]L1
D 2

22k(
k

F S ]uk
2

2]L1
D 2

2
]uk

2

2]L1
G J . ~A21!

In this case, the translational modes can also bifurcate,
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they are less ‘‘dangerous’’ in the sense of causing instab
ties, as they are located either in the gap or in the continu
spectrum~depending on the value ofh), while the phase
modes bifurcate from the origin and hence they can dire
lead to instability. We note, however, for the sake of co
pleteness that the bifurcation of the translational modes
be obtained from Eq.~A24! below, by settingb50.

~2! In the casek50, bÞ0, and L15L2, the phase
modes are at the origin, so the translational modes are
only potential discrete-spectrum source of instabilities.
this case, for the translational modes, it will be

v25
1

(
k

Uk
2
Fv t

2(
k

Uk
222bv t(

k
WkUkuk

224b(
k

Uk
2uk

2G .
~A22!

~3! When bÞ0 ~and b is fixed!, k50, and L12L2
5e, the translational eigenvalues will be once again resp
sible for possible instabilities, and the corresponding eq
tion for them is

v25v1,t
2 1

1

(
k

Uk
2
F2v te(

k
UkWk12e( uk

2Uk
2

22be(
k

uk
2Uk

2G , ~A23!

wherev1,t is given by Eq.~A24!.
~4! Finally, in the general case whenbÞ0 andkÞ0, both

translational and phase modes are of interest and can lea
instabilities. In this case, it will be true for the translation
modes that

v25v t
21

1

(
k

Uk
2
F22kv t(

k
UkWk1k2(

k
Uk

212k~b

21!(
k

Uk
2uk

222bv t(
k

UkWkuk
224b(
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4G ,
~A24!

while for the phase modes, we obtain

v25vb50
2 1

1

(
k

S ]uk

]L1
D 2 F2kb(

k
S ]uk

2

2]L1
D 2G ,

~A25!

wherevb50 is given by Eq.~A21!.
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